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This illustrated review focuses on the physical forces that regulate hemostasis and

scales. Blood is a complex fluid with a viscosity that varies with how fast it flows and
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sel wall and blood cells that dictates the kinetics, structure, and stability of thrombi.

red blood cells concentrate in the vessel core and platelets marginate to the near-wall
Handling Editor: Alisa Wolberg region. At the vessel wall, shear stresses are highest, which requires a repertoire of
receptors with different bond kinetics to roll, tether, adhere, and activate on inflamed
endothelium and extracellular matrices. As a thrombus grows and then contracts,
forces regulate platelet aggregation as well as von Willebrand factor function and
fibrin mechanics. Forces can also originate from platelets as they respond to the ex-
ternal forces and sense the stiffness of their local environment.
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Essentials

o Physical forces regulate blood clot formation and stability.
e Forces imposed by blood flow regulate platelet adhesion and aggregation at the site of vascular injury.
o Platelets can sense forces and create their own forces during spreading and contraction.

e The structure and function of two biopolymers essential to clot stability—von Willebrand factor and fibrin—are regulated by force.
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Biomechanical phenomena across length scales

Vessel Scale Cell Scale Molecular Scale
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Blood flow imposes forces on blood vessels, blood cells, and plasma and endothelial derived proteins and receptors.
These forces influence many aspects of thrombus formation over many length scales (see below). Platelets themselves
can apply forces on a thrombus by mechanosensing their environment and clot contraction. These biomechanical
mechanisms are potential therapeutic targets that can discriminate between the disparate forces and flows that regulate
hemostasis and arterial, venous, and microvascular thrombosis.
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Blood rheology: Viscosity is a function of shear
rate and vessel size
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Platelet margination: Blood cell bumper cars 3-4foldhigher than

in vessel center**
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The tank treading
motion of the RBC
membrane may
eject platelets into
the near-wall
region'317

RBCs migrate away
from the wall due to
their deformability”

Platelet collisions in
RBC enriched vessel

core bias their motion
towards the wall®12

Making sense of shear rate and shear stress

Velocity is zero at the wall due
to drag along the vessel wall

velocity (V) shear stress (T)

differentiate and multiply
by viscosity (p)

Shear stress and
shear rate are
maximum at the
wall where blood
cells needs to
adhere
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Shear stress dependent platelet adhesion

A repetoire of receptors are used by platelets to
adhere and activate on extracellular matrix
proteins; different combinations of these receptors
are used to support adhesion over the range of
forces platelelts experience in hemostatic and
thrombotic blood flow conditions.

VWF binds to collagens and
laminin to form a network of
adhesive VWF'8-2!
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Forces and flows regulating platelet aggregation

Rapid platelet accumulation at
high shear rates®*
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Platelet activation and fibrin
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Hemodynamically regulated pro- and anti-thrombotic
mechanisms in venous valves

Initiation and propagation of

oscillatory flow during normal loss of oscillatory flow due to
thrombus formation®%-52
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Rolling blood cells: Slip, catch, and flex bonds*

catch-slip bonds®35

1 VWEF, P-selectin

*TM, thrombomodulin; TFPI tisue factor pathway
inhibitor; EPRC, endothelial protein C receptor; ICAM1,
intracellular adhesion molecule 1
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Catch-slip and flex bonds allow
platelets to roll by forming fast,
weak bonds (e.g. with VWF) before
slow, strong slip bonds form to
support firm adhesion.
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*Data from different experimental approaches supports different bond models for the receptor-ligand pairs.*
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Platelet mechanosensing in rolling and tethering

low shear rates (<1000 s™)
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Platelet mechanosensing in spreading and contraction
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Regulation of von Willebrand factor function by force

Force induced exposure
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Fibrin mechanics from the molecular to clot scale
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