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ABSTRACT: Bleeding frequency and severity within clinical categories of hemophilia A are highly variable and the origin of this 
variation is unknown. Solving this mystery in coagulation requires the generation and analysis of large data sets comprised 
of experimental outputs or patient samples, both of which are subject to limited availability. In this review, we describe how a 
computationally driven approach bypasses such limitations by generating large synthetic patient data sets. These data sets 
were created with a mechanistic mathematical model, by varying the model inputs, clotting factor, and inhibitor concentrations, 
within normal physiological ranges. Specific mathematical metrics were chosen from the model output, used as a surrogate 
measure for bleeding severity, and statistically analyzed for further exploration and hypothesis generation. We highlight results 
from our recent study that employed this computationally driven approach to identify FV (factor V) as a key modifier of 
thrombin generation in mild to moderate hemophilia A, which was confirmed with complementary experimental assays. The 
mathematical model was used further to propose a potential mechanism for these observations whereby thrombin generation 
is rescued in FVIII-deficient plasma due to reduced substrate competition between FV and FVIII for FXa (activated factor X).

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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This review highlights our recent study in which we 
used computational modeling to discover a potential 
modifier of thrombin generation in mild to moder-

ate hemophilia A.1 We were motivated by the variation 
in bleeding frequency and severity within clinical cat-
egories—severe, moderate, mild—of hemophilia A,2,3 
characterized by coagulation FVIII (factor VIII) levels of 
<1%, 1% to 5%, and 5% to 20%, respectively. Although 
the bleeding severity in the majority of patients corre-
lates with their factor levels, up to 10% of patients in 
the severe category have a bleeding phenotype that 
would be classified clinically as mild.4,5 The underlying 
mechanism(s) of these observations are unknown. This 
prompts the question: in the case of severe quantitative 
defects with mild bleeding, what is compensating for the 
deficient clotting protein? If we can answer that ques-
tion, we may identify variable(s) that can be adjusted or 

manipulated to improve outcomes for patients with high-
frequency bleeding and, more generally, help predict 
bleeding patterns early in life, before serious bleeding 
begins. However, numerous variables could potentially 
be at play either working alone, additively, antagonisti-
cally, or synergistically. These variables could be biologi-
cal, biochemical, or biophysical in nature. Measuring all 
possible variables in a clinical environment or testing how 
single variables affect the clotting response under flow, 
one at a time, would be time consuming and expensive, 
and in some cases, not possible. Our goal was to exploit 
the efficiency of a computationally driven approach to 
search for clues to solve this scientific mystery.

Please see www.ahajournals.org/atvb/atvb-focus for all 
articles published in this series.
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Data-Driven Versus Computationally Driven 
Approaches to Discovery in Coagulation
Discovering these clues, particularly if multiple fac-
tors are involved, requires the generation and analysis 
of large data sets comprised of experimental outputs 
or patient samples. One approach to this problem is to 
simply look for patterns in such data sets with statisti-
cal or machine learning algorithms, an approach known 
as data-driven. In this case, algorithms are trained on 
existing data sets to learn features that are associated 
with well-defined outcomes. These approaches typically 
improve with exposure to more and more data and with 
good data sets and well-defined inputs and outputs; 
these approaches can yield useful predictive tools. For 
example, machine learning was used to inform dosing 
strategies for warfarin,6–8 which is known to have a wide 
interindividual variability in dose requirement,9 incor-
porating dozens of input characteristics for thousands 
of patients. Another example of this approach is from 
Chatterjee et al,10 in which a data set was generated in 
vitro specifically to train a machine learning algorithm 
to learn platelet calcium responses, the ultimate goal 
being prediction of responses due to any combination 
of agonists beyond the training data. This method was 
extended to handle additional agonists to generate a 
human platelet calcium calculator11 and used to pre-
dict platelet activation states within a large multiscale 
mathematical model of platelet deposition under flow.12 
Machine learning algorithms can identify patterns and 
serve as powerful prediction tools, but because of their 
nonmechanistic nature, they may not be able to deter-
mine the mechanism(s) underlying those patterns.

To address our question using a data-driven approach, 
we first needed to determine if generating an ideal 
experimental data set was even feasible. An ideal data 
set would involve systematic variation of clotting factor 
and inhibitor concentrations and subsequent monitoring 
of thrombin generation and thrombus formation under 
flow, for each variation. This can quickly require a very 
large number of complicated experiments, for example, 
choosing only 5 clotting factors to vary could result in 
over 2000 different possible combinations, plus techni-
cal replicates. Furthermore, unless a synthetic plasma 
is used for the experiments, modulating the levels of 
individual clotting factors in whole blood is challenging. 
Performing a handful of these experiments is certainly 
doable but generating the entire desired data set is not. 
This roadblock, combined with our goal to understand 

the mechanism(s) underlying the observed variability in 
bleeding severity, led us to take a different approach that 
we call computationally driven. We illustrate our compu-
tational driven framework in Figure 1.

What if instead of generating a large experimental 
data set, we use a mathematical model to generate a 
large computational data set? In such mathematical 
experiments, we can easily and systematically vary all 
of the clotting factor and inhibitor concentrations within 
a specified range. For each set of variations, we then 
run the model to produce a computational prediction 
of thrombin generation and clot formation under flow. 
This process allowed us to, in essence, create a math-
ematical depiction of thrombin generation in hundreds 
of thousands of individuals with moderate to mild hemo-
philia A, or in other words, create synthetic patient data. 
Generation of this type of data set is possible because 
of computational efficiency since one of the simulations 
takes only seconds to complete. We can generate a 
massive amount of data that can subsequently be statis-
tically analyzed to extract and identify complex interac-
tions between multiple clotting factors or inhibitors, as 
we illustrate in Figure 2. Moreover, with a mechanistic 
mathematical model, as further described below, we have 
access to the time-varying concentrations of every coag-
ulation reactant and reaction intermediate, which enables 
us to search for biochemical mechanisms underlying any 
patterns found in the data. This means that, with our 
model, in addition to monitoring the changes that occur 
in the output (thrombin generation), we can determine 
how those changes occur.

To statistically analyze the synthetic patient data, we 
first need a mathematical metric to serve as a surrogate 
for bleeding severity and then need to study how that 
metric is affected by manipulations of model inputs. We 
chose thrombin generation as our surrogate metric of 
bleeding severity and clotting factor and inhibitor levels 
that are input into the mathematical model as potential 
biomarkers. Our choice of metric is suitable since throm-
bin generation is decreased in hemophilias A and B; defi-
ciency in clotting factors VIII or IX leads to decreased 
thrombin generation since they comprise the tenase 

Nonstandard Abbreviations and Acronyms

F factor
TF tissue factor

Highlights

• Computational approaches complement experimen-
tal ones and enable discovery in coagulation.

• Enormous synthetic data sets, created with compu-
tational models, can be used for focused and effi-
cient searches for modifiers of coagulation.

• Iterating between mathematical predictions, experi-
mental validation, and mathematical exploration of 
mechanism allowed for identification of FV (factor 
V) as a modifier of thrombin generation in mild to 
moderate hemophilia A.
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complex, which is necessary for the propagation phase of 
coagulation and subsequent robust thrombin generation. 
We chose clotting factors and inhibitors as inputs since 
they are commonly measured and because, interestingly, 
their normal ranges are accepted as around 50% to 
150% of the mean values of the healthy population.13,14 
Because of this known variation, we hypothesized there 
could be clues hidden within the plasma composition and 
that there may be synergistic or antagonistic behavior 
between proteins at levels still considered normal. To test 
this hypothesis, we asked the following question: how do 
clotting factor and inhibitor levels alter thrombin genera-
tion during flow-mediated coagulation when factor VIII is 
deficient? Investigating this question requires the use of 
a mechanistic dynamic model that describes flow-medi-
ated coagulation. We next describe what we mean by 
dynamic models and briefly review some dynamic models 
of coagulation.

Dynamic Models and Coagulation Thresholds
A dynamic model of coagulation is a mathematical rep-
resentation of a network of biochemical reactions that 
yields time-varying concentrations of coagulation pro-
teins. A mechanistic dynamic model of coagulation is one 
that is based on explicit consideration of the reactions 

that yield observed thrombin generation data; an example 
of a nonmechanistic model of coagulation is a descriptive 
model that provides a quantitative summary of observed 
data, such as using linear regression to fit a line to data. 
The Mann laboratory developed one of the first dynamic 
models of the extrinsic blood coagulation system. That 
model displayed a nonlinear, threshold-like dependence 
of thrombin generation on concentrations of TF (tissue 
factor) bound to FVIIa, tissue factor pathway inhibitor, 
and antithrombin,15,16 which agreed well with previous 
observations made in the authors’ experimental studies 
using synthetic plasma.17 In relation to our work described 
below, the Mann model was also used in a combined 
experimental and computational approach to investi-
gate variation in thrombin generation in mild to moderate 
hemophilia A as a result of changing other variables in 
the model.18 The authors simulated thrombin generation 
at various concentrations of FVIII with other factor levels 
set to either all high-normal (150% of mean values) or 
all low-normal levels (50% of mean values). Interestingly, 
their model showed that if all factor levels are at high-
normal levels when FVIII is low, that the thrombin genera-
tion can be slightly enhanced. This model has been used 
extensively to investigate sensitivity to normal variations 
of clotting factors in healthy individuals,19 to assess risk 
of disease,20 and to investigate mechanisms underlying 

Figure 1. Computationally driven approach for discovery in coagulation.
A mechanistic mathematical model is used to create large synthetic patient samples which are then analyzed to reveal modifiers, propose 
mechanisms, and generate hypotheses for experimental validation.D
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complications of trauma and coagulopathies,21,22 but it 
does not explicitly consider lipid surfaces, either phos-
pholipid vesicles or activated platelet surfaces, known 
to regulate coagulation.23–25 Collectively, these studies 
suggest that the type of surface, that is, lipid vesicle ver-
sus platelet surface, may be important in differentiating 
and understanding coagulation thresholds.26 Additionally, 

biophysical effects on coagulation such as flow and dif-
fusion likely contribute to how the thresholds manifest in 
vivo, but that cannot be studied with static models. We 
refer the reader interested in models of static coagula-
tion to other reviews.27–31

Models incorporating the dynamic interplay between 
flow, surface, and coagulation allow for investigations 

Figure 2. A mathematical model of coagulation under flow identifies FV (factor V) as a modifier of thrombin generation in 
hemophilia A.
FV is a modifier of thrombin generation in a mathematical model of flow-mediated coagulation. A, Thrombin concentration time series generated 
by uniformly and independently varying plasma protein levels including inhibitors tissue pathway inhibitor (TFPI) and antithrombin (AT) ±50% 
from normal (110 000 total simulations); mean (solid black line), boundaries that encompass 50% (pink), 90% of the data (orange), and the 
maximum/minimum of the computed solutions (gray-dashed); blue line drawn at 1 nM. B, First (blue) and total (orange) order Sobol indices are 
plotted as mean±SD computed with 5000 bootstrap samples of the original 110 000 simulations. C, Plasma protein levels distributions shown 
as box-and-whisker plots (mean in red, whiskers drawn at 3× the interquartile range), conditioned on achieving >1 nM of total thrombin by 40 
min. D, Calibrated automated thrombography. FVIII-deficient (<10%) plasma treated with vehicle control, 50 μg/mL exogenous prothrombin, 
100 μg/mL anti-FV, and exogenous prothrombin and anti-FV. Assay conducted with 5 pM TF (tissue factor) and phospholipids. E, Flow assays 
with whole blood from FVIII-deficient individuals. A, Representative images of DiOC6 labeled platelets and leukocytes and Alexa Fluor 555 
labeled fibrin(ogen) on collagen-TF surfaces at 100 per second after 25 min for vehicle control, 50 μg/ mL exogeneous prothrombin, 100 μg/
mL anti-FV, and exogenous prothrombin and anti-FV. Scale bar=50 μm. CS indicates condition for samples; and VAT, variance analysis time.
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considering transport effects. Kuharsky and Fogelson32 
developed a model (denoted as KF model) to simulate 
thrombin generation at the site of a small vascular injury 
under flow. The model accounts for platelets, platelet 
deposition, and surface-mediated coagulation reactions, 
all under flow. Transport of each protein and platelet spe-
cies to and from the reaction zone by flow and diffusion 
is described using mass transfer coefficients.33 The reac-
tion zone is a region located just above a small patch of 
exposed subendothelium; its height is defined by how 
high a protein molecule can be above the injury and still 
diffuse to the injury before being carried away by the 
flow. The authors proposed an inhibitory, anticoagulant 
role for the adherent platelets, namely that they physi-
cally inhibit the enzyme complexes embedded in the 
injury patch. This notion of paving over the injury was 
later confirmed experimentally.34 The KF model was 
later extended to include endothelial cell reactions35 and 
the FXI pathway.36 Results from these models aided in 
proposing testable hypotheses including thrombin gen-
eration dependence on a surface tissue factor threshold 
under flow32,35 (later experimentally validated at venous 
and arterial shear rates37); the effects of platelet count 
on thrombin generation under flow in hemophilia C36; 
and the effects of FXIa and TF in postintravenous immu-
noglobulin treatment of thrombotic events.38 There are 
a variety of other models of clotting under flow, using 
different mathematical and computational techniques, 
including some spatial models that account for each indi-
vidual red blood cell and platelet. Here, we base our stud-
ies on the extended version of the KF model but refer the 
reader to other reviews devoted to this topic.39–47

Quantifying Uncertainty in Computational 
Models
The extended KF model, as well as other models 
described above, rely on numerous assumptions regard-
ing the biochemical reaction networks, kinetic rate con-
stants, and the experimental assays used for model 
calibration. The inherent uncertainty in these assump-
tions raises an issue of the value of kinetic modeling of 
thrombin generation for prediction and proposal of test-
able hypothesis.48,49 A main point of contention involves 
thrombin generation simulated with different existing 
mathematical models giving contrasting results, even 
when using the same initial concentrations of plasma 
proteins.48 Counter arguments in favor of mathematical 
modeling stress that for a model to be truly predictive 
and accurately simulate coagulation reactions and per-
turbations; it must be carefully validated with the experi-
ments that it simulates, and any additional sources of 
uncertainty and variability should be quantified. Statisti-
cal methods attempt to examine the extent to which 
model outputs depend on model inputs. Specifically, 
sensitivity analysis and uncertainty quantification 

methods seek to assess how the uncertainty in a model 
input (such as a kinetic rate or factor level) propagates 
through the model to produce variations in a model out-
put (such as the level of thrombin at a particular time). 
Many uncertainty quantification approaches exist and, 
depending on the question under investigation, they 
may be employed to identify plausible ranges of model 
inputs from observations of model outputs or to investi-
gate the variability, uncertainty, and goodness of a par-
ticular computational model itself.

Sensitivity analysis techniques have been used to 
study static and flow-mediated models of coagula-
tion.15,19,50–52 Danforth et al50 performed a local sensi-
tivity analysis of the Mann model15 to investigate the 
sensitivity of thrombin generation as a function of its 
reaction rates, as well as to investigate the sensitivity of 
thrombin production to initial coagulation protein con-
centrations19 alone or through their pairwise changes/
interactions. A similar analysis was conducted by Naidu 
and Anand51 on the model of Anand et al.53 In Link et 
al,54 a tailored sensitivity analysis approach was devel-
oped to analyze the effects of variability within the 
model of Fogelson et al.36 In that approach, concentra-
tions of coagulation proteins, kinetic rate constants, and 
biophysical and platelet specific parameters were var-
ied. Robust thrombin production was seen for variations 
of plasma proteins within the physiological range, and 
wider variations in thrombin generation occurred with 
variation in individual kinetic rate constants.

Identifying FV as a Modifier of Thrombin 
Generation in Hemophilia A Using a 
Computationally Driven Approach
Using our mathematical model36 and computationally 
driven approach, we generated an enormous amount 
of synthetic patient data and used it to identify FV as 
a modifier of thrombin generation in mild to moderate 
hemophilia A. All simulations used to generate the data 
set considered a low TF density of 5 fmol/cm2 and a low 
shear rate of 100 s-1. Motivated by our previous stud-
ies,32,35,38 we first did an initial screening and determined 
a range of critical TF levels where thrombin sharply tran-
sitioned between an attenuated response with thrombin 
peaking at a concentration below 1 nmol/L and an ampli-
fied thrombin response in which the thrombin concentra-
tion reached at least 1 nmol/L by 40 minutes; the TF 
range is 4.63 to 7.78 fmol/cm2 for FVIII-deficient plasma. 
Since individuals with FVIII deficiencies are known to 
bleed in regions of the body with low TF levels,55–57 we 
chose a single TF level, 5 fmol/cm2, near the low end of 
our computationally determined critical TF range.

Our synthetic patient data set exhibited large vari-
ance in thrombin generation due to changes in clotting 
factor and inhibitor levels, see Figure 2A. To determine 
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which clotting factor and inhibitor levels were the most 
important for enhancing thrombin generation within our 
synthetic data set, we used Sobol sensitivity analysis58 
to determine the fraction of the observed variance in 
thrombin generation that was attributable to each factor 
or inhibitor level, see Figure 2B. We found that FV and 
prothrombin (FII) contributed the most to the variance, 
with their interaction explaining nearly 20% of it. We 
then looked more directly at the ≈5% of simulations that 
produced an amplified thrombin response (see above) in 
FVIII-deficient plasma. We examined the plasma clotting 
factor and inhibitor levels that produced the amplified 
response and observed that the distributions of these 
levels were highly skewed for 2 factors: FV and pro-
thrombin. All simulations with an amplified response had 
plasma FV level of <75% of its mean population level and 
most had a prothrombin level above 125% of its mean 
population level (shown in Figure 2C). These results indi-
cated that, within our mathematical model, low-normal 
FV levels and high-normal prothrombin levels enhanced 
thrombin generation in FVIII-deficient plasma and thus 
FV and FII became leading candidates as potential modi-
fiers of thrombin generation.

Our mathematically identified candidates, FV and 
prothrombin, were then confirmed as modifiers by cali-
brated automated thrombography and microfluidic flow 
assays59 on collagen-tissue factor surfaces at a shear 
rate of 100 s-1 utilizing both FVIII-inhibited plasma and 
whole blood from FVIII-deficient individuals. Using mix-
tures of FV and prothrombin-depleted plasmas, purified 
FV and prothrombin, and an anti-FVIII function–block-
ing antibody yielding FVIII activity of <1%, we gener-
ated four cases of variations in FII and FV plasma levels. 
Results were consistent with the mathematical model, 
showing that low-normal FV (43%) increased the peak 
thrombin concentration and endogenous thrombin 
potential and that both of these measures were fur-
ther enhanced with high prothrombin (136%). Similar 
trends were seen with FVIII-deficient plasma from indi-
viduals using the same treatments as in the microfluidic 
flow assay experiments, see Figure 2D. Whole blood 
microfluidic assays were performed using both syn-
thetic plasma and blood from individuals with moder-
ate and mild FVIII deficiencies. There was a significant 
increase in both the rate and maximum accumulation of 
fibrin(ogen) with partial inhibition of FV via the anti-FV 
antibody, and an even greater response occurred with 
the addition of prothrombin, see Figure 2E.

What could be the basis of this enhanced response? 
Because our model is mechanistic, we are able to probe 
it further to determine which reactions in the coagulation 
system become more effective on the path to thrombin 
generation when FV is in the low-normal range. Doing so 
allowed us to recognize that in the model the mechanism 
for enhanced thrombin production is decreased substrate 
competition of platelet-bound FV with platelet-bound 

FVIII to bind to and be activated by platelet-bound FXa 
(activated factor X). In our simulations, FXa is the domi-
nant activator of FV and FVIII before significant amounts 
of thrombin have been produced; therefore, FV and FVIII 
compete to form their respective substrate-enzyme com-
plexes before their cleavage to FVa (activated factor V) 
and FVIIIa (activated factor FVIII). Model results showed 
higher concentrations of substrate-enzyme complexes 
(FVIII with FXa) for low-normal FV cases, indicating that 
lowering FV levels increases activation of FVIII by FXa. 
Further evidence in support of this mechanism is that 
decreasing the kinetic rate constant for the association 
of platelet-bound FV and FXa by 50% led to 30-fold 
higher thrombin concentrations (with normal FV levels) 
by 40 minutes. These results support the notion that 
reducing substrate competition between FV and FVIII for 
FXa is the mechanism (in the model) by which thrombin 
generation is rescued in FVIII-deficient plasma.

The model results and explorations of mechanism 
described above were performed under the assumption 
of severe hemophilia whereby extremely low levels of 
FVIII were used in the model (1% of normal or about 
0.01 nmol/L) and for normal and low-normal levels of FV. 
Additional simulations showed that a further decrease in 
FV levels (down to about 10%) enhanced thrombin gen-
eration and further increase in FV levels (up to 200%) 
inhibits thrombin generation. Below an FV level of 10%, 
there was insufficient FV and FVIII to support significant 
thrombin generation (see Figure S2 in previous article1). 
Additionally, we observed variations in thrombin gen-
eration when decreasing FV levels from normal to low-
normal levels for varying categories of hemophilia A, by 
using FVIII levels at 1, 3, 5, and 8% (see Figure S6 in our 
previous article1). For example, with FVIII at 8%, there 
was significant thrombin formed by 40 minutes when 
FV was at normal levels. But when FV was decreased 
to low-normal levels, there was enhanced thrombin gen-
eration as shown by a significant decrease in the time 
it took the system to achieve that thrombin concentra-
tion. These results are in line with a recent study by Shao 
et al60 where peak thrombin concentration in calibrated 
automated thrombography was decreased when FV was 
titrated back into blood from individuals with combined 
FV/FVIII deficiencies.

CONCLUSIONS
In conclusion, computational modeling enables the cre-
ation of enormous synthetic patient data sets. These 
data sets are complementary to clinical or experimen-
tally derived data sets in that they can be screened for 
specific metrics and statistically analyzed to direct small 
numbers of difficult experiments or identify biomark-
ers. As evidenced by our work described in this article, 
combining computationally driven and experimental 
approaches enhances the potential to discover modifiers 
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of coagulation. Further exploration with mechanistic 
dynamic models can provide focused analysis and pre-
dictions of any underlying biochemical mechanisms that 
lead to patterns in the synthetic data sets. Certainly, com-
putational approaches have their limitations; the models 
should be simple enough to be truly computationally 
efficient to run but complex enough to include the rel-
evant biochemistry and biophysics. That said, we think 
that computational approaches can help steer experi-
mental approaches in directions that otherwise may not 
have been considered; even if a computational model 
fails to include one’s favorite protein or reaction, they 
may still provide novel intuition about other proteins and 
interactions in coagulation, and can also usually be eas-
ily modified to consider more species or reactions. With 
advancements in computational power and technology, 
we think this is an exciting time to explore computational 
techniques for further discovery in coagulation.
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