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Abstract

Assessment of platelet function and coagulation under flow conditions can augment traditional 

static assays used to evaluate patients with suspected hemostatic or thrombotic disorders. Among 

the available flow-based assays, microfluidic devices require the smallest blood volume and 

provide multiple output options. These assays are based on the presence of wall shear stress that 

mimics in vivo interactions between blood components and vessel walls. Microfluidic devices can 

generate essential information regarding homeostatic regulation of platelet activation and 

subsequent engagement of the coagulation cascade leading to fibrin deposition and clot formation. 

Emerging data suggest that microfluidic assays may also reveal consistent patterns of hemostatic 

or thrombotic pathology, and could aid in assessing and monitoring patient-specific effects of 

coagulation-modifying therapies.

Introduction

Normal hemostasis involves a combination of cellular, soluble, and structural factors 

interacting in a coordinated fashion at vascular injury sites to stem blood loss. Alterations in 

the normal regulation of this process, whether in the setting of pro-thrombotic or 

hemorrhagic states, contribute to significant clinical pathology. Currently, assessment of 

patients with disorders of hemostasis involves a multifaceted evaluation of the various 

components of clot formation including coagulation factors, platelets, and ancillary 

thrombotic and lytic proteins. Activity assays for specific coagulation factors and adjuvant 

proteins, as well as various platelet function tests, are available to evaluate components 
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separately. In an effort to measure many or all of the components of the hemostatic system in 

concert, “global assays” have been developed such as calibrated automated thrombogram 

(CAT) and thromboelastography (TEG) [1]. Rational use of these assays can provide a fairly 

thorough representation of a patient’s hemostatic status. However, the static nature of most 

of these assays neglects the effect of blood flow and the contribution of the endothelium to 

hemostasis. On the one hand, platelet adhesion and aggregation and von Willebrand factor 

(VWF) activity are shear stress-dependent [2], while on the other hand, coagulation, fibrin 

formation, and fibrinolysis are shear rate dependent [3]. Additionally, endothelial cells 

promote and inhibit clot formation by many mechanisms including secretion of soluble 

agents (VWF, Prostacyclin, ADPases) and surface-bound molecules (thrombomodulin, P- 

and E-selectin). Therefore, microfluidic assays are an alternative that may provide a more 

complete evaluation of hemostasis.

Historical Perspectives on flow-based assays

The combined efforts of many researchers led to the development of parallel-plate [4] and 

annular assays [5] over 40 years ago [6], complemented the existing cone-plate viscometers 

[7], and allowed for assessment of the interactions of blood cells and vessel wall components 

under physiologic flow conditions. This new field took shape in the early 1960’s with the 

development of an annular perfusion chamber, also known as the “Baumgartner chamber” to 

evaluate platelet-vessel wall interactions. Further refinement of the physical, chemical, and 

pharmacologic factors that influenced platelet and coagulation-related thrombosis led to the 

design of the parallel-plate, also known as the “Sakariassen chamber.”

The 1970’s and 1980’s witnessed a surge of flow devices that were instrumental to the 

evaluation of hemostatic function under flow. This concept was used for the evaluation of 

several disease states such as von Willebrand disease (VWD) [8–10], hemophilia [11], 

platelet storage pool defects [8], platelet receptor defects [12,13], and uremia [14]. In 

addition, the function of transfused platelets was also studied in flow-based assays [15]. 

Later studies focused on platelet rolling, adhesion, and aggregation on immobilized ligands 

and provided critical insights into shear-dependent receptor-ligand interactions [16–18]. 

Despite the wealth of knowledge in the basic physiology of hemostasis revealed by these 

groundbreaking studies, these early devices were never translated into clinical assays, in part 

because of the disadvantageous combination of relatively large blood volume requirements 

and low throughput.

Microfluidics

Microfluidic technology addresses some of the limitations of larger flow chambers by 

offering disposable standardized devices that allow for the reproducible analysis of 

hemostatic function under a wide range of shear stresses with low blood volume 

requirements. To date, this technology has been primarily used in the basic science setting to 

study the interactions between receptor-ligand binding, the effect of these interactions on 

platelet signaling pathways, and the role of hemodynamics; often in conjunction with assays 

evaluating coagulation [17,18]. Multiple options for the patterning of prothrombotic 

substrates and proteins on microfluidic devices provide the versatility needed for accurate 

simulations of vascular injury, allowing for further elucidation of normal hemostatic 
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pathways [19–21]. Furthermore, strategic arrangement of membrane-based devices to 

control flow of soluble pro- or anti-hemostatic factors has advanced our knowledge of the 

role of these factors in normal hemostasis and thrombus formation. For example, this 

approach led to the demonstration that both flux-dependent thrombin concentration and wall 

shear rate regulate fibrin polymerization and deposition under flow [3]. A similar method 

was used to show that ADP-induced platelet aggregation under flow is directly proportional 

to the agonist flux [22].

Many standardized in vitro assays have been developed for the purpose of analyzing 

platelet-related hemostatic and thrombotic properties at baseline compared to various 

disease-related or treatment-induced conditions. These include platelet aggregometry, flow 

cytometric evaluation of surface activation markers, scanning electron microscopic 

evaluation of platelet spreading, clot retraction, and western blot analysis of platelet 

signaling protein phosphorylation. The physiologic relevance of many of these assays may 

be called into question as their static nature does not account for certain critical interactions, 

such as that of GP1bα and VWF, which is significantly relevant under shear stress. One may 

argue that biologically representative assays must include a component of flow, since 

disorders of bleeding and thrombosis are modulated in many cases by flow-dependent 

mechanisms.

Currently, the majority of clinical hemostatic analyses are static clotting-based assays 

sensitive to severe factor deficiencies or inhibition. Available assays that incorporate some 

aspect of shear stress include the Platelet Function Analyzer 100 (PFA-100®), VerifyNow®, 

and the Multiplate® analyzer. Each of these offers a specific, but likely incomplete, picture 

of hemostasis, prompting a desire for an integrated test of global hemostasis [23,24]. In 

addition, the majority of these assays require relatively large amounts of blood; some 

laboratories require as much as 4 mL of whole blood to isolate plasma for specific 

coagulation or platelet function assays. In comparison, the low blood volume requirement 

(as little as 50 µL) of a microfluidic system is advantageous in situations of limited blood 

supply, such as premature infants at risk for anemia or individuals with poor venous access 

who could more easily provide a small-volume fingerstick or heelstick sample.

There are many excellent recent reviews on the subject of the design, construction, and use 

of microfluidic chambers in the setting of basic science studies of coagulation [23,25,26]. 

For example, microfluidic technology has been used as a model to define novel findings in 

platelet biology such as shear-dependent platelet aggregation [27,28] and platelet-VWF 

bond interactions [29]. The use of microfluidic technology has also contributed significantly 

to VWF biology such as in further characterization of stimulated release of ultra-large VWF 

(ULVWF) from endothelial cells that form “VWF strings” suggesting that flow rates 

dramatically affects the conformation of VWF [30]. Microfluidic technology has also been 

useful in the functional study of ADAMTS13 (A Disintegrin And Metalloprotease with 

ThromboSpondin type 1 repeats, member 13) which cleaves VWF [31] and modulates its 

prothrombotic activity. This review provides a summary of the recent contributions of 

microfluidics for clinical applications in hemostasis and thrombosis, and focuses on the 

unique opportunities offered by microfluidic devices to add a flow-based component to 

current hemostatic evaluations in patients with bleeding and thrombotic disorders.
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Current Applications for the Use of Microfluidics in Clinical Assays

Three main current applications of microfluidic-based flow assays include (1) quantifying 

the normal range of responses within the healthy population, (2) evaluating hemostasis in 

various disease states, and (3) evaluating the effect or dose titration of platelet- or 

coagulation-modifying drugs that may be used by patients with bleeding or thrombotic 

disorders.

Quantifying the normal range of response in flow assays

Minor clinical bleeding is relatively common in the general population, ranging from 

increased bruising and epistaxis to increased blood loss following surgeries, dental 

procedures, and childbirth. Microfluidic assays have the potential to advance our knowledge 

of the normal contributions of multiple interacting factors into the overall clinical bleeding 

phenotype. In the largest flow assay study to date (n=104 individuals), microfluidic devices 

were used to identity sources of variability in platelet adhesion and aggregation on type I 

collagen under flow [32]. The results showed that plasma VWF levels and glycoprotein 6 

gene (GP6) genotypes imparted the greatest influence on platelet accumulation. One recent 

and more comprehensive analysis of the signaling contributions made by individual platelet 

receptors systematically evaluated 52 adhesive surfaces (fabricated with a combination of 

ligands for nine different platelet receptors) and used eight measured parameters and 

hierarchical clustering to determine the relative contribution of these receptors to platelet 

aggregate growth and thus “phenotype” platelet adhesion and aggregation [33]. This 

combinatorial approach, partially made possible by the high-throughput capability of 

microfluidics, led to the discovery of unique signatures of genetic platelet defects.

Evaluating hemostasis in various disease states

A challenge in diagnosing and treating bleeding disorders is predicting bleeding risk, which 

does not always correlate with coagulation factor levels. For example, two individuals with 

hemophilia A and similar factor VIII (FVIII) levels may experience different clinical 

bleeding phenotypes [34,35]. It is possible that global assays, such as whole blood flow 

assays that integrate the entire hemostatic system, could provide better predictions of 

bleeding severity than factor levels.

Microfluidic flow assays recapitulate some salient features of bleeding disorders. For 

example, abnormal thrombus formation is observed with blood from FVIII-null mice at 

venous shear stresses but not at arterial shear stresses, in agreement with the presentation of 

bleeds in low shear stress environments (joints, muscles) in humans [36]. Microfluidic 

assays have also been used to measure fibrin deposition and platelet aggregate size in 

patients with hemophilia [37,38]. While fibrin deposition was clearly different between 

severe and mild hemophilia samples, the system could not discriminate well between severe 

and moderate FVIII deficiency. Interestingly, it was observed that platelet aggregate size, but 

not fibrin deposition, could discriminate severe and moderate FVIII deficiencies [38].

Flow assays have also been used to evaluate VWD, such as demonstrated in the study by 

Sugimoto et al. that allowed for the discrimination of VWD types 2A and 2B in whole blood 

Branchford et al. Page 4

Thromb Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[39] and the recent report of novel mutations in the A1 domain that mediate abnormal VWF-

platelet binding in VWD type 2A [29]. As compared to the static nature of current collagen 

binding assays [40], microfluidic assays may allow for the characterization of abnormalities 

in VWF-collagen binding under physiologic shear stresses and can further elucidate novel 

pathology in this relationship. Future microfluidic-based approaches to VWD, especially 

those with type 1 disease, could involve comparison of individual patients’ aggregation 

patterns to those of existing cohorts, once established, to help predict clinical bleeding.

On the other end of the hemostatic spectrum, patients who suffer vascular thromboembolic 

events are treated with anticoagulant (venous) or antiplatelet (arterial) therapies. A common 

clinical problem is the determination of appropriate length of therapy when faced with a 

paucity of data about coagulation status. Assays such as D-dimer levels or thrombin-

antithrombin (TAT) complexes can be misleading as they can be affected by various changes 

in homeostasis (inflammation, infection, recent exercise, physical or mental stress, etc.). 

Real-time evaluation of the thrombotic potential of a patient’s status would ostensibly be 

very helpful to determine an appropriate time to stop anticoagulation/antiplatelet therapy. 

Perhaps such an evaluation could soon be possible with recent advances in microfluidic 

assays that have provided the ability to investigate pathological shear stresses in channels 

that mimic stenotic vessels [41] or those with resultant turbulent flow. Similarly, 

microfluidic assays have been used to evaluate the spatial distribution of tissue factor on 

coagulation, which may have bearing on treatment of sepsis-related disseminated 

intravascular coagulation or venous thromboembolism [42]. Another promising trend is the 

use of microfluidics to evaluate patient-specific thrombotic potential and response to specific 

pro-coagulant agents such as chemotherapy [43].

Monitoring alterations in normal hemostasis and response to therapy

Microfluidic assays may have the potential to guide personalized dosing of antiplatelet 

agents. For example, microfluidic assays are sensitive to COX-1, P2Y1 and P2Y12 inhibitors 

and can detect differences in inter-individual sensitivity to aspirin [44] or inhibitors of the 

ADP receptors (P2Y1 and P2Y12) [45] though not to apyrase or a P2X1 inhibitor [46]. Dose-

response curves in an occlusive microfluidic device that models thrombotic occlusion 

determined increased efficacy for eptifibatide compared to aspirin [47]. Moreover, 

microfluidics have proven useful in the evaluation of novel antiplatelet agents and allow for 

faithful comparisons to existing agents [48].

Promising results have also been reported with evaluation of anticoagulants in microfluidic 

devices. Dose-response curves have been measured on collagen-TF surfaces at venous and 

arterial shear rates with heparin, argatroban, abciximab, and OS-1 (GP1bα antagonist) and at 

drug concentration sensitivity greater than that available through TEG [49]. Microfluidic 

assays have also been used to evaluate patient-specific thrombotic potential and response to 

anticoagulation in a novel point of care coagulation assay device [50]. The disposable 

microfluidic device used in this study uses a fluorescence-based anti-Factor Xa assay to 

monitor the overall anti-thrombotic effect of unfractionated heparin, tinzaparin, and 

enoxaparin with high reliability (average coefficients of variation <10% and R2>0.98). This 

approach avoids the pitfalls of the standard point of care devices that rely on clot-based 

Branchford et al. Page 5

Thromb Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



endpoints with high variability and low reliability, in addition to measuring only certain 

portions of the coagulation pathway. Similarly, a microfluidic assay was used to study 

thrombus formation on collagen and von Willebrand factor matrices, in addition to a dose-

response effect of abciximab, demonstrating the ability to obtain a large number of data 

points per single patient sample using small blood volumes and high throughput approach 

[51]. Similarly, a recent report describes the development of a low-cost paper-based 

microfluidic system to help titrate oral anticoagulation doses [52]. In addition to measuring a 

patient’s anticoagulation status, microfluidic technology has also allowed for the study of 

the response to replacement or bypass therapies in individuals with FVIII deficiencies [38] 

demonstrating that replacement (FVIII) and bypass therapy (rFVIIa) can result in significant 

increases in fibrin formation that mirror the clinical hemostatic response.

Limitations to widespread clinical use of microfluidic-based technologies

While microfluidic-based technology has the potential to significantly advance our 

understanding of basic hemostasis and offers numerous potential clinical applications, some 

significant drawbacks remain. Complex designs allow for strategic utilization of multiple 

shear stresses and input types, but may be cumbersome for widespread clinical use [53,54]. 

Another potential disadvantage of using microfluidic systems is the labor-intensive device-

patterning and intricate setup, though several self-contained commercial systems are now 

available that are quite straightforward to operate, with reproducible patterning strategies 

that decrease device variability. While the basic materials used to create microfluidic devices 

are relatively economical, a major limitation is the current expense of purchase and upkeep 

of the essential sophisticated image capture and analysis apparatus, such as confocal 

microscopy and real-time imaging acquisition software. Currently, these pose significant 

logistical roadblocks to the clinical use of microfluidic technology and further research into 

translational approaches will likely lead to advancements in bringing this technology to the 

clinical area.

A major hurdle impeding clinical adoption of these devices is the lack of well-established 

normal results. This is primarily due to the relative novelty of the technology as well as to 

the inter-assay variability due to lab-specific differences in the specifics of flow chamber 

construction and patterning as well as the source, composition, and concentration of 

prothrombotic substrate. While some publications have begun to address this issue [32], 

further investigation is needed to more thoroughly categorize normal variation prior to 

mainstream clinical usage. In an attempt to standardize microfluidic strategies, The 

International Society of Thrombosis and Hemostasis has advocated for standardization in the 

measurement of thrombus formation in flow chamber-based assays via their Biorheology 

Subcommittee [55–58].The group has suggested comparative studies to determine optimal 

assay conditions (chamber type, surface coating, pre-analytical blood collection and storage, 

image recording, and image quantification), as well as a cost-efficacy comparison evaluating 

frequently used custom-made and commercial devices. A combined effort by the scientific 

community is encouraged to continue this necessary standardization.
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Future Directions

The future of microfluidic assays likely will include endothelialized microvasculature 

models [30,59,60] and microfluidic models of vessel stenosis [27,28,61,62]. Microfluidic 

assays that incorporate endothelial cells can model microvascular thrombosis in diseases 

such as sickle cell disease and hemolytic uremic syndrome, offering some insight into the 

versatility and clinical relevance of the microfluidic model as a biophysical assay of 

hemostatic pathophysiology [60]. This particular study demonstrated that hydroxyurea 

quantitatively decreases sickle cell-related microvascular obstruction and that the platelet 

aggregation-decreasing effects of eptifibatide are increased under shear stress, thus 

potentially increasing its utility in hemolytic uremic syndrome.

One significant advantage of such microvasculature model design is the ability to create 

circular, rather than rectangular, vessel geometry [30]. This approach minimizes the 

variations in shear stress across the channel, thus more closely replicating blood vessels. 

However, the constant flow rate/shear stress used in many microfluidic assays is dissimilar 

to the pulsatile flow rates experienced in vivo and standardization of flow rates and pulses 

will be necessary for further development of the field. Another advantage of 

microvasculature models is the incorporation of endothelial mediated pro- and 

antithrombotic mechanisms, such as the release of VWF from damaged or activated 

endothelial cells [30]. The flexibility of microfluidic technology allows for the design of 

assays that can more appropriately model the various diameters and shear stresses of various 

arteries, veins, and even micro-capillaries [60]; this allows for the efficient evaluation of 

disease process over a variety of vasculature-specific models. Advancements in engineering, 

such as microscafffold structures [63] or nanosensing technologies [64] may allow for novel 

detection of hemostatic biomarkers that can further differentiate primary and secondary 

hemostasis. The advancement of these novel output technologies may obviate the need for 

advanced image capturing and processing software and allow for an easier translation of 

microfluidic technology to the clinical realm.

The next step in microfluidic research will be to bring these assays from the basic science 

research bench into the clinical lab and eventually the bedside. In the setting of trauma, 

which is often associated with acute coagulopathy, a simplified bedside microfluidic assay 

could provide real-time guidance of blood product replacement in a manner similar to that 

proposed for TEG [65,66] but with additional analysis of platelet function. Additionally, the 

application of microfluidics to global hemostasis assessment in the setting of bleeding 

phenotypes has the potential to determine appropriate factor replacement doses to target 

appropriate fibrin/thrombin formation without pro-thrombotic overcompensation.

A cooperative approach between engineers and clinicians could usher in an era of flow-

based global hemostasis evaluation allowing for guided blood product administration to 

correct acute coagulopathy of trauma, gauge clinical bleeding risk to guide factor 

replacement or bypass therapy in patients with confirmed/suspected bleeding disorders, and 

evaluate thrombotic potential in patients with history of, or risk for, thromboembolic disease 

to guide anticoagulant choice and dose. Overall, microfluidic technologies offer a unique 

combination of physiologic accuracy and small blood volume requirements to evaluate a 
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large number of patient-specific factors that has the potential to individualize therapeutic 

options for disorders of thrombosis or hemostasis.
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Microfluidic Assay Highlights

• Microfluidic technologies have been evolving over the last sixty years

• Microfluidic devices allow platelet and coagulation analysis under flow 

conditions

• Other advantages include low blood volume requirements and multiple 

output options

• Microfluidic assays can aid in monitoring patient-specific drug effects and 

dosing

• Continued adaptations are needed to optimize these assays for routine 

clinical use
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Figure 1. 
Representative Image of a Microfluidic Device and Schematic Diagrams to Demonstrate the 

Assay. A) A representative image of a PDMS microfluidic device patterned with four 

channels, two filled with a red dye. B) A schematic example of a surface that demonstrates 

left to right collagen patterning with perpendicular flow. Other devices may use small 

circular patterns of substrates. C) Whole blood is perfused onto a chamber connected to a 

syringe pump generating desired shear rate. D) A cross sectional appearance of a channel, 

whereby platelet deposition can be detected with bright field microscopy.
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Figure 2. 
Formation of platelet aggregates under flow conditions from citrated whole blood. Re-

calcified whole blood is perfused at a consistent flow rate across a collagen strip. Platelets 

bind to collagen through collagen receptors and through VWF mediated adhesion in the 

direction of blood flow. The degree of platelet adhesion/aggregation is related to the plasma 

concentration of VWF A) Representative image of platelet adhesion seen with a healthy 
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control. B) Representative image of decreased platelet adhesion see in a patient with Type 1 

Von Willebrand Disease
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Table 1

Recent relevant studies using microfluidic assays for studying hemostasis.

Author Journal Year Title Conclusions

Muthard RW, 
et al

ATVB 2015 Fibrin, fibrinogen, and 
transclot pressure gradient 

control hemostatic clot 
growth during human 

blood flow over a 
collagen/tissue factor 

wound

Hemostatic clotting is dependent on core-localized thrombin 
that triggers platelet p-selectin expression and is highly 

regulated by fibrin and transclot pressure. Fibrinogen plays a 
role in venous but not arterial conditions.

Zhu S, et al Thromb Res 2014 Contact activation of blood 
coagulation on a defined 
kaolin/collagen surface in 

a microfluidic assay

Alteration in flow conditions can affect the activity of the 
contact pathway, which is less efficient in prompting 

thrombin generation compared to the extrinsic pathway.

Onasonga-
Jarvis AA, et 

al

J Thromb Haemost 2014 Thrombin generation and 
fibrin formation under 

flow on biomimetic tissue 
factor-rich surfaces

Fibrin deposition requires perturbations in the flow field that 
protect reactions from dilution by flow under venous and 
arterial conditions. FVIII and FIX have a modest effect on 
fibrin deposition at high tissue factor (TF) concentrations 

but are necessary for fibrin deposition at low TF 
concentrations. FXI amplifies thrombin generation under 

flow at both low and high TF concentrations.

Colace T, et al J Thromb Haemost 2014 Microfluidic Assay of 
Hemophilia Blood 

Clotting: Distinct Deficits 
in Platelet and Fibrin 

Deposition at Low Factor 
Levels

Hemophilia patients with <1% factor activity exhibited 50% 
reduction in platelet deposition. Defects in fibrin deposition 

were seen below 13% factor activity.

De Witt S, et al Nat Comm 2014 Identification of Platelet 
Function Defects by Multi-
Parameter Assessment of 

Thrombus Formation

Description of platelet adhesion on 52 different surfaces 
with 8 output paremeters describing different stages of 

thrombus formation, demonstrating the diagnostic utility of 
in vitro flow- based approaches to suspected disorders of 

hemostasis or thrombosis

Li M, et al PloS one 2014 Microfluidic Thrombosis 
Under Multiple Shear 
Rates and Antiplatelet 

Therapy Doses

Dose-response curves for heparin, eptifibatide, and ASA 
were dependent on shear rate, which varied inversely with 

thrombus stability

Li R, Diamond 
S

Thromb Res 2014 Detection of Platelet 
Sensitivity to Inhibitors of 
COX-1, P2Y1, and P2Y12 

Using a Whole Blood 
Microfluidic Flow Assay

Receiver-Operator Characteristic curve R-values can serve 
as a self-normalized metric of platelet function for a single 
blood sample. Aggregation was increasingly inhibited by 

antagonists of COX-1<P2Y12<P2Y1<Combo P2Y1+12

Neeves, et al PloS one 2013 Sources of Variability in 
Platelet Accumulation on 
Type 1 Fibrillar Collagen 

in Microfluidic Flow 
Assays

VWF levels were positively correlated to VPLT and SC at 
wall shear rates, and were thereby the strongest determinant 
of platelet accumulation. Individuals with Ag genotype of 

P6 gene had lower platelet accumulation compared to 
individuals with AA genotype. Citrate appears to 

irreversibly diminish platelet function.

Hosokawa K, 
et al

Thromb & Haemost 2013 Analysing Responses to 
Aspirin and Clopidogrel 
by Measuring Platelet 
Thrombus Formation 
Under Arterial Flow 

Conditions

ASA and thienopyridine markedly reduced growth and 
stability of platelet thrombi. Platelet thrombogenicity in 
ASA-treated patients is associated with either coallagen-

induced aggregation or circulating platelet-monocyte 
aggregates, but in those receiving dual antiplatelet therapy, it 

depends more on ADP-induced aggregation.

Onasoga-
Jarvis A, et al

PloS one 2013 The Effect of FVIII 
Deficiencies and 

Replacement/Bypass 
Therapies on Thrombus 

Formation Under Venous 
Flow Conditions in 
Microfluidic and 

Computational Models

No difference in fibrin formation was seen between severe 
and moderate hemophilia A, though platelet aggregate size 
was significantly larger for moderate factor VIII deficiency. 
In moderate deficiency local thrombin concentration is high 
enough to induce platelet activation, but too low to support 

fibrin formation. Platelet adhesion is needed for fibrin 
formation. Individuals treated with bypass therapy (rFVIIa) 
had a reduced lag time in fibrin accumulation compared to 

healthy controls, and experienced changes in fibrin 
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Author Journal Year Title Conclusions

dynamics that could lead to a prothrombotic state, a result 
not seen in those treated with rFVIII.

Van Kruchten, 
et al

Platelets 2012 Measurement of Whole 
Blood Thrombus 

Formation Using Parallel-
Plate Flow Chambers – A 

Practical Guide

A practical guide for use of parallel-plate flow chambers, 
addressing surface coating, blood flow and shear rate 

calculations, pre-analytical variables, and analysis 
procedures

Li M, et al Lab on a Chip 2012 Microfluidic System for 
Simultaneous Optical 

Measurement of Platelet 
Aggregation oat Multiple 

Shear Rates in Whole 
Blood

Description of design, fabrication, testing, and application of 
a new microfluidic device for measurement of the entire 

process of platelet thrombosis in whole, unlabeled blood at 
multiple shear rates

Abbreviations: ADP, adenosine diphosphate; ASA, acetyl-salicylic acid; rFVII, recombinant factor VII; rFVIIa activated recombinant acstudying 
hemostaitor VII; SC, platelet surface coverage; VPLT, platelet accumulation; VWF, von Willebrand Factor
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